Computer Music Journal

Michael McNabb

Center for Computer Research in
Music and Acoustics

Stanford University

Stanford, California 94305

General Description
Sound Elements

Dreamsong was composed and realized during 1977
and 1978 at the Center for Computer Research in
Music and Acoustics (CCRMA). The basic intent
of the piece was to integrate a set of synthesized
sounds with a set of digitally recorded natural
sounds to such a degree that they would form a
continuum of available sound material. The sounds
thus range from the easily recognizable to the to-
tally new, or, more poetically, from the real world
to the dream realm of the imagination, with all that
that implies with regard to transitions, recurring
elements, and the unexpected. The essential sound
elements in Dreamsong can be divided into five
categories: simple frequency modulation (FM),
complex FM, sung vocal processing and resynthe-
sis, other additive synthesis, and processed crowd
sounds and speech.

The sung vocal sounds were originally those of a
single soprano, Marilyn Barber. A total of 10 single
held notes and one glissando, on different pitches
and syllables, were digitally recorded. Most of the
soprano sounds in the work are these tones pro-
cessed in various ways. In certain cases, however,
the tones were synthesized using additive synthesis
based on a single Fourier transform of the steady
state of the original signal. The resynthesized tones
were overlapped with the originals when it was
necessary to have individual control over each
harmonic.

The other main melodic and drone instrument is
an additive synthesis instrument that generates its
own time-varying formants using a particular kind
of random process. The oscillating chords that ap-
pear toward the beginning and again near the end

Computer Music Journal, Vol. 5, No. 4, Winter 1981,
0148-9267/81/040036-18 $05.00/0
© 1981 Massachusetts Institute of Technology.

36

Dreamsong:
The Composition

were produced with simple FM, and all the bell
sounds are various types of complex FM.

The ambient crowd sounds were recorded from
the catwalks of a large auditorium. Two micro-
phones were suspended about 20 ft below the ceil-
ing, and the sound was recorded on tape and later
digitized. The speaking voice at the very end of the
piece is that of Dylan Thomas.

Musical Material

Musically, Dreamsong presents a relatively simple
harmonic and melodic structure so as not to ob-
scure the important textural and timbral transi-
tions. There are two major modes from which most
of the melodic and harmonic material is derived
(Fig. 1). Mode 1 is essentially B-flat mixolydian, al-
though it is not always centered on B-flat. Mode 2
extends through a two-octave range before repeat-
ing and is characterized by chromaticism and a
division into two regions, one in whole and half
steps, the other in thirds.

The primary theme, which builds up over the
course of the piece, is from Mode 1 and is the set-
ting of a line taken from a Zen sutra (Fig. 2, top).
The secondary theme, the first three notes of which
appear at the outset and ending of the work and the
whole of which is heard in the middle, derives gen-
erally from Mode 2 (Fig. 2, bottom).

As regards duration in general, most of the slower
rhythms and section lengths derive from Fibonacci
relationships, not because of their numerologic or
mystic implications, but because they present a
convenient and effective alternative to traditional
rhythmic structures. Of course, a little acknowledg-
ment of the gods of mathematics never hurt any
computer musician.

Some rhythmic units are based on a suboctave of
a central pitch being used at the time. For example,
the primary tone in the first oscillating chord at
102 sec is F, 349.23 Hz. Six octaves below that is

Computer Music Journal

Fig. 1. Two modes from
which much of the pitch
material in Dreamsong
was derived.

Fig. 2. Themes in Dream-
song. The primary theme
(top),a setting of a Zen su-
tra derived from Mode 1.
Secondary theme (bot-
tom), derived in part from

Mode 2.
Mode 1 Mode 2
4] | 4] 4 he
£ te—n—e—m— § ———
o o o o—o+HY
[Y) e VO
(o} | fr— b‘g £ bF b' »
e T a—— e e
— : —a4
Y Erom per — fect noth— ing—ness the wond’—rous be —ing ap —pears
(from a Zen sutra)
TN~
" . be ® ‘o h'a“ b be \) —~
) be-)) . ' . Yo ¥
é E— —7 D 919) & /&) 0
[0) . | e J AR 4 o |
.) N— T h U

5.457 Hz, which is a period of 0.183 sec. This is the
rate at which the chord oscillates from channel to
channel and is four times the rate of the octave
bells on B-flat in the background.

Programs, Machines

The primary program used was MUS10, Leland
Smith’s version of Tovar’s MUSCMP (Tovar 1977;
Tovar and Smith 1977), which is an extended ver-
sion of Stanford’s original music program (written
by David W. Poole). That program was a descendant
of Music IV, written by Max W. Mathews. This mu-
sic compiler features a subset of Algol with special
operations directed toward music synthesis. Thus,
in addition to the usual unit generator—type func-
tions, one can program one’s own initialization-
time and run-time functions, which allows a tre-
mendous degree of flexibility in instrument
design—yet to be matched by any hardware syn-
thesizer currently operational. This flexibility was
critical to the production of Dreamsong.

Sound editing, filtering, and analysis were done

using the programs EDSND by Loren Rush (Rush
and Mattox, forthcoming) and S by James A.
Moorer. In certain cases, note lists were generated
with Leland Smith’s SCORE program (Smith 1972),
although most of the work was generated in small
sections to be digitally mixed, so that note lists
could usually be typed in directly using the text
editor. All computation was carried out on the DEC
KL-10 processor of the Stanford Artificial Intel-
ligence Laboratory.

About MUS10

Since much of the discussion in this article will be
illustrated with code listings, it will be necessary to
digress slightly to give a general introduction to the
MUSI10 language.

MUSI10 code includes a mixture of floating-point
variables and arrays, simple Algol statements and
functions, and unit generators, which are special
functions designed to cycle through waveform
tables or envelopes or perform other processes such
as random-number generation. These unit genera-

McNabb 37

tors are very similar to the unit generators in Music
V (Mathews 1969).

The code for a particular sound or process is
grouped into what is known as an instrument
block, which begins with the declaration “instru-
ment (name);” (an example to be discussed later is
given in Code Listing 3). The code in an instrument
block is evaluated once per sample, with all current
instruments being evaluated in order of definition.
The output of each instrument for that sample for
each channel is then stored, and the process begins
again for the next sample.

An instrument declaration may be followed by
the declaration of variables local to that block, us-
ing the declaration “variable (variable 1), (variable 2), . . .
(variable n);”. If the variables are to change in value
during the course of a note (e.g., receive the value of
a unit generator), they are known as run-time vari-
ables and are preceded by a slash in the declaration
(the first such example is in the code for RANDF,
Code Listing 2). Otherwise they are initialization-
time variables and will retain the first value that
they are assigned. Arrays are declared with “array
(namel), (name2), . . . (name n [x]);”” where the elements of
the array are numbered from O to x — 1. Variables
and arrays may also be declared outside of an in-
strument block, in which case they are global to all
subsequent instruments. These are often used for
communication between instruments.

Following the instrument and variable declara-
tions may come a block of code that is to be ex-
ecuted only at the onset of a note. This block is
prefaced with “i__only” (i.e., initialization only).
Either run-time or initialization-time variables
may be assigned values in this block.

There are a number of predeclared variables.
SRate contains the sampling rate in Hertz. Outa,
outb, outc, and outd store the final values of sam-
ples going to each of four possible channels. A set
of variables P1, P2, P3, . . . Pn stores the parameters
for each instrument call. Mag (for magic number)
stores a value needed in unit generators and else-
where to compute the increments. Mag is normally
set to the standard wavetable length divided by the
sampling rate. Multiplying this by the desired fre-
quency gives the increment. For example, if the

38

wavetable is 512 words in length and sRate is
25600 Hz, then mag is 0.02. If the waveform is to
be played at 200 Hz, then the increment becomes
mag * 200 = 4.

The unit generators referred to in this article are
only a subset of those available in MUS10.

Oscil ((amplitude), (increment), (array)) returns a value
from the given waveform array, depending on
(increment), and scaled by (amplitude).

Zoscil is similar to oscil, but interpolates be-
tween adjacent array elements for increased ac-
curacy (i.e., less noise).

Expen (or zexpen) is like oscil (or zoscil), but
reads through the array only once, holding the
final value thereafter.

Zosca is a form of zoscil that allows the wave-
form index to be initialized to zosca’s first
argument.

Linen((amp), (attack time), (decay time), (duration), (array),
(internal variable)) allows independent control over
the attack and decay portions of an envelope,
like the LINENS unit generator of Music IVBF
(Howe 1975). The (internal variable) must be de-
clared by the calling routine (an example will
be given in Code Listing 3).

Randh((amplitude), (increment)) returns a value from a
stepwise random function.

Value[n]((expression)) is not a unit generator as such,
but simply causes the given expression to be
evaluated every n samples.

Algol functions may be declared using the con-
struct “function ((argument 1), (argument 2), . . . (argument
n))” followed by a block of code that performs oper-
ations on the given arguments or global variables
or both. These functions may also return a result
to the instrument or function from which they are
called. A number of predeclared functions exists:

Int(R) returns the integer part of a real number R.
Rand returns a random number between —1 and 1.
Power(x,y) returns x’.

Zero(A) sets all elements in array A to 0.

Sqrt(x) returns the square root of x.

Two special operators, seg and synth, are used to
set up envelope and waveform tables. Seg is used

Computer Music Journal

Code Listing 1. Code for
the zDELAY and SDELAY
functions, which are
interpolating variable-
length delay units.

begin

variable Sampl, Samp?2;

Buffer[Inptr| < Input;

Sampl « Inptr — Curlen;

if Sampl < O then Sampl < Sampl + BufLen;

Inptr < Inptr + 1;

if Inptr = BufLen then Inptr < 0;

if Sampl < BufLen—1 then Samp2 <« Sampl+1
else Samp2 « 0;

end;

begin

variable Samp1, Samp?2;

Sampl <« Inptr — Curlen;

if Sampl < 0 then Sampl « Sampl + BufLen;

if Sampl < BufLen—1 then Samp2 « Sampl+1
else Samp2 < 0;

end;

function zpeLAy(Input, Curlen, BufLen, array Buffer, Inptr);

return(Buffer[Sampl] + ((Sampl—int(Sampl)) * (Buffer|Samp2|—Buffer[Sampl])));

function speLAY(Curlen, BufLen, array Buffer, Inptr);

return(Buffer[Sampl] + ((Sampl—int(Sampl)) * (Buffer[SampZ] Buffer[Sampl])));

(Read in the new sample
(Position readout pointer
(Might have to wrap around
(Increment input pointer
(Wrap around if at end of array

(Just reads out of same buffer

(Position readout pointer
(Might have to wrap around

(Check for end of array

to fill a table with a line-segment function. If env
is declared as an array, then “seg (env); ¥, X, ¥, X,,
., Va X,;" fills the array with a function defined
by the given coordinate pairs, where the x, are be-
tween 1 and 100, and the y, may be any value. The
function is normalized in the x domain to fit the
bounds of the array. Synth is used when a set of
harmonic numbers and corresponding amplitudes
are to be defined. Synth (wave); h, a,, h, a,, . . -,
h, a, 999;” will fill the array wave with a waveform
containing the harmonics humbered h, at their re-
spective amplitudes a,. The waveform is normal-
ized to fit within the range [—1,1]. The number 999
is used to mark the end of the definition. If desired,
two additional numbers may be added to each pair,
representing the initial phase in degrees, and the
amplitude (“DC”) offset. In this case, “99” must im-
mediately precede the definition (Arnold 1978).

Some Key Functions
ZDELAY, SDELAY

The Algol part of MUS10 allowed the creation of
several run-time functions that were used through-
out Dreamsong for many different purposes. These
include zZDELAY (an interpolating delay line), sDELAY
(which provides an additional output from zDELAY),
and RANDF (a correlated noise generator).

ZDELAY (see Code Listing 1) consists of a buffer
array that can be thought of as a ring. Samples
are written sequentially into the array, wrapping
around when the end of the array is reached. Sam-
ples are then read out from a “delayed” location,
some real number of samples behind where the
new samples are being written. The length of the
delay may be dynamically variable, and a linear in-

McNabb 39

terpolation is done to provide the fractional part of
the delay length. sDELAY simply provides an addi-
tional output tap at a different point on the same
delay line.

Randf

MUSI10 includes three functions that deal with ran-
dom numbers: rand, randh, and randi. Rand (which
requires no argument) returns a new random num-
ber whenever it is called. Randh generates a random
stepwise function at a given frequency. Randi does
likewise, but linearly interpolates between new
values, producing a zig-zag function. All values are
scaled to [—1,1].

Attempts to use randi as a frequency modulator
to produce a natural-sounding random vibrato met
with little success and led to extensive experimen-
tation with 1/f and other types of noise. 1/f noise
has a power spectral density that decreases propor-
tionally to 1/frequency, as opposed to white noise,
whose power spectral density is flat. The essential
difference is that white noise is uncorrelated: each
new random value is chosen independently of the
preceding one. 1/f noise, however, is correlated
noise: each new value depends to some extent on
what the last one was (Gardner 1978). This kind of
randomness is frequently found in nature, for ex-
ample, in profiles of coastlines, mountain ranges,
etc., and it is also probably representative of the
natural unevenness of human-produced vocal and
instrumental tones. After all, in these cases each
physical variation is certainly not independent of
the adjacent or preceding ones. When used to syn-
thesize a random vibrato, the 1/f variety produces
a much more natural-sounding result than white
noise. A certain smoothness is heard, resulting
from the absence of the occasional large skips be-
tween values that occur when there is no correlation.

After several complex and computationally ex-
pensive 1/f noise algorithms (programmed by Julius
Smith) were tried, it was observed that for most
purposes almost any moderate amount of correla-
tion applied to the random-number sequence would
do the job. RANDF in Code Listing 2 does just that
in a very simple manner, producing white noise
when Factor is 0, and increasingly correlated noise as

40

Factor approaches 1. The quality of the noise can
thus be “tuned.” (Oldval keeps track of the previ-
ously generated value.) RANDFI produces a linearly
interpolating random function at frequency Freq,
scaled by amplitude Amp, and correlated according
to Factor. Cnt must be initialized to 0, and Oldval and
Diff are global variables used to keep track of the
preceding value and its difference from the next
one. RANDEC is much like RANDFI, but interpolates
with the portion of the cosine function taken from
0 to m instead of a straight line. This produces better
results in certain applications, such as in control-
ling the delay time of a ZDELAY unit being used as a
choral-effects generator.

Readin

Another special function used frequently is readin.
This MUSI10 function enables input of one or more
stored digital sound files into an instrument, where
the samples can be modified in any way allowed by
the available code. One obvious use of this feature
is for processing digitally recorded natural sounds.
Another very valuable application is multipass syn-
thesis, in which sounds (phrases, passages) are ar-
rived at gradually in steps. Synthesizing all aspects
at once can be very inefficient in a system in which
one tiny mistake can cause the recomputation of
many minutes of complex sound. For example, one
might start by computing a single-voice melody,
then process that through a chorus-effect generator,
then process that through a panning instrument,
and finally add reverberation. Each step of the pro-
cess may be worked on until it is perfected, without
recomputation of the previous steps. For small sys-
tems, this method also has the advantage of keep-
ing program core requirements down.

In this fashion, compositions are gradually con-
structed piecemeal and mixed into larger and larger
sections until the work is complete. This is how
Dreamsong came into being.

Synthesis Techniques

Additive Synthesis: Voice Instrument

As was mentioned earlier, most of the distinctly vo-
cal sounds in Dreamsong were produced by pro-

Computer Music Journal

Code Listing 2. Random- RANDFI, a periodic random- ber generator that interpo-
number generators used in number generator, inter- lates using the portion of

Dreamsong. RANDF i a polates linearly between the cosine function taken
random-number function successive values. RANDFC from O to .

that uses correlated noise. is a periodic random-num-

function RaNDF(OldVal, Factor);
begin
variable /LowBound, /UprBound, /Range;
Range < 2 — 2 * Factor;
LowBound « OldVal — Range;
if LowBound < —1 then LowBound « —1;
UprBound « OldVal + Range;
if UprBound > 1 then UprBound « 1;
return(LowBound + (UprBound—LowBound) * (1+rand)/2);
end;

function RaNDFI{Amp,Freq,Factor,OldVal, Diff,Cnt);
begin
variable /Interp;
Interp < Cnt/(sRate/Freq);
if Interp = 1 then Cnt « Interp « 0;
if Cnt = 0 then
begin
OldVal « OldVal + Diff;
Diff « rRaNDF(OldVal, Factor) — OldVal,
end;
Cnt < Cnt + 1;
return(Amp * (OldVal + Diff * Interp));
end,;
array Curv,CurvDiff(128);
variable I,CosLen;
CosLen « 127;°
for I < O step 1 until CosLen do Curv[I] « (1-COS(PI * (I/CosLen))) *.5;
for I < O step 1 until CosLen—1 do CurvDiff[I] « Curv[I+1] — Curv[I};

function RaNDFC|Amp, Freq, Factor, OldVal, Diff, Cnt);
begin
variable Indx, NewVal;
Indx < (CosLen/sRate) * Cnt* Freq;
if Indx = CosLen then Cnt < Indx < 0;
if Cnt = 0 then
begin
OldVal « OldVval + Diff;
Diff < rRaNDF(OldVal, Factor) — OldVal;
end;
Cnt < Cnt + 1;
return(Amp * (OldVal+Diff * (Curv|[Indx]+CurvDiff[Indx] * (Indx—int[Indx]))));
end;

("s” Curve data

McNabb

11

cessing digitally recorded soprano tones. However,
if certain kinds of transformations are desired,
recorded tones cannot be used. For example, 220
sec into Dreamsong, a cluster of bells at random
pitches gradually coalesces into a solo singing
voice, and soon after that a whole chorus of singers
coalesces into a single, low-frequency drone! In
these cases, it is necessary to have absolute control
over the frequency and amplitude of each harmonic
of the voice. If the spectrum is generated by a set
of individual sine-wave oscillators, one can easily
interpolate from or to other similar sets of data,
whether harmonic or inharmonic. The exploitation
of spectral fusion phenomena (Chowning 1980) be-
comes relatively simple and is rich with expressive
possibilities.

When such control was not needed, it was found
that the application of the proper vibrato, overall
frequency skew, and overall amplitude envelope to
an otherwise steady-state waveform was quite ade-
quate to synthesize a soprano voice convincingly
(see Code Listing 3). The spectral information was
obtained by doing a Fourier transform of a segment
of approximately 200 msec of the original voice.
This method of synthesis represents a considerable
step in data reduction from complete three-dimen-
sional analysis (time, frequency, amplitude) such as
that done by the phase vocoder (Portnoff 1976). All
the harmonics remain proportionally the same rela-
tive to the fundamental (this would not be the case
if an interpolation were taking place). In a complex
compositional texture, where the exact reproduc-
tion of a specific tone is not needed, this method
gives very good results. Essentially, there is only
one frequency function and one amplitude func-
tion. The frequency function in Code Listing 3 has
two parts, vibrato and skew. The skew function is a
simplified representation of the natural tendency to
“home in” on the pitch during the attack of the
note. The vibrato is synthesized separately using
RANDEFI.

Additive Synthesis: Random Formant Instrument
The primary melodic and drone instrument in

Dreamsong, other than the voice, also uses additive
synthesis. It computes its own dynamic spectrum

42

based on a series of randomly generated formant
structures. The overall spectral decay shape is sup-
plied as an array of amplitudes or possibly two ar-
rays with a gradual interpolation between them.
The formant structure is computed from a random
number tree, as shown in Code Listing 4, with the
sum of the eight spectral amplitudes normalized to
the value N by the GetHarms function. The process
is analogous to a binary fractal pattern (Mandelbrot
1977), only each iteration is randomized. The re-
sults are quite different from results when eight
independent random numbers are selected. For ex-
ample, with the tree, all eight spectral amplitude
values will come out equal only if all the random
numbers turn out to be exactly 0.5. This process
thus guarantees a much greater variety in the distri-
bution of energy from one function call to the next.

The instrument omm, given in Code Listing 5,
appears many times in Dreamsong, in particular
between 90 sec and 150 sec, between 265 sec and
415 sec (see Fig. 4), and between 477 sec and 510
sec. At the end of the second low drone (around 400
sec), the controlling spectral shape gradually allows
only the 11th and 12th harmonics to be present (in
a 12-harmonic version), which become the two
pitches around which the following whole section
is based, thus effectively blurring the distinction
between timbre and normal musical pitch struc-
tures in a way possible only with digital synthesis.
The instrument as presented here is somewhat sim-
pler than that used in the piece, but all essential
elements are present. In addition, envelopes for a
sample case are given in the code. Two auxiliary
functions are also defined, one that simply copies
an array and another that interpolates between two
arrays, given the interpolation fraction.

Code Listing 5 contains a sample instrument call
that begins generating new formants at 1-sec inter-
vals and gradually speeds up to 0.1-sec intervals.
The overall spectral decay shape changes from F1 to
F2 (also defined in Code Listing 5) in the first 2.5
sec of the note, which glissandos up from F to G
and has 1.2% vibrato at 4.5 Hz.

Frequency Modulation: Two Bells

A complex FM instrument was designed to produce
a cathedral-bell-like sound. It uses three carriers,

Computer Music Journal

Code Listing 3. Instrument
SING, used to model a
singing voice with additive
synthesis and RANDFI.

Code Listing 4. Function
GetHarms, which
generates harmonics used
by instrument omm (Code

seg(F3);,—11, 0.312, 025, ‘050,

instrument SING;

=575,

Vib « 1 + raNDF1(.01, 18, 0.6, X, Y, Cnt);
Skew « 1 + linen(.12, 0.2, 0.1, P2, F3, Val);
Sig < oscil(P4, (P3 * mag)* Vib * Skew, F1);
Env « linen(1, 0.18, 0.15, P2, F2, Va2);
outa < outa + Sig * Env;

end;

variable /X,/Y,/Cnt,/Val,/Va2,/Vib,/Env,/Sig,/Skew;
i_only begin X < Y « Cnt « Val « Va2 « 0; end;

Listing 5).
' array F1,F2,F3(512); |
synth(F1);1 1.0000, 20.7079, 30.0126, 4 0.0050,
| 50.0316, 60.0016, 70.0022, 80.0014,
9 0.0018, 100.0056, 110.0010, 12 0.0010,
13 0.0010, 14 0.0014, 999; (soprano “ah” at D5
seg(F2); 01, 110, 0.725, 09375 0.750, 075, 0 100; (Amplitude envelope

—-.5100; (Frequency skew envelope

(Parameters: Beg, Dur, Freq, Amp
(runtime variables

(Always initialize these to zero
(random vibrato generator
(frequency skew function
(waveform oscillator

(envelope generator with attack

(and decay parameters

begin
variable I,Sum; array X(9),R(7);

X[1] < R[0] * R[1] * R3];
X[2] < R[0] * R[1] *(1-R[3]);
X[3] < R[0] *(I-R[1])* ~ R[4];
X[4] < R[0] *(1-R[1]) * (1-R[4]);
X[5] < (1=-R[0])* R[2] * R[5];
X[6] < (I-R[0]) * R[2] * (1-R[5]);
X[7] < (1=-R[0]) * (1=R[2])* R[6];

X[8] < (1-R[0]) * {1=R[2]) * (1-R[6]);
Sum <« 0;
for I < 1 step 1 until 8 do

begin

Harms|I] < X][I] * Shapel];

Sum <« Sum + Harms[I];

end;
forI < 1 step 1 until 8 do

Harms[I] « Harms|I] * N / Sum,;
end,;

function GetHarms(array Harms, array Shape, N);

for I < O step 1 until 6 do R[I| < abs(rand);

(Choose seven random
(numbers (0 & 1)
(calculate 8 values from tree.

(Multiply by spectral envelope

(Normalize to N

McNabb 43

Code Listing 5. Instrument ‘GetHarms (Code Listing
OMM is an additive syn- 4). The sample instrument
thesis instrument that call uses typical parameter
generates its own random values.

series of formants using

Parameters:
P1: Begin Time
P2: Duration
P3: Fundamental frequency
P4: Peak Amplitude (arbitrary linear scale from 0 to 2047)
P5: Amplitude function
P6: Formant shift time, function in P8 = 0
P7: Formant shift time, function in P8 = 1
P8: Formant shift time function
P9: Spectral envelope 1
P10: Spectral envelope 2
P11: Duration of interpolation from P9 to P10
P12: Glissando note, function in P13 = 1
P13: Glissando function
P14: Percentage of vibrato (0 & 1) as percentage of P3
P15: Vibrato rate
P16: Amplitude envelope attack time (for linen)
P17: Amplitude envelope decay time

array Env,Rampl,Ramp2,Gliss,Syn[512];
array F1,F2,CurShape,Shapel,Shape2, Amps, NewAmp,OldAmp|[9];

seg(Env); 01,15,0.725,137.5,0.7 50, 0 75, 0 100; (Amplitude envelope
seg(Rampl); 01,1 75, 1 100; (Upward ramp
seg(Ramp2); 1 1, 0 100; (Downward ramp
seg(Gliss); 01,045, 1 55,1 100; (Upward glissando
synth(Syn); 1 1, 999; (Sine wave
variable I;
for I < 1 step 1 until 8 do (Two spectral envelopes:
begin
F1[I] < 1 / power(I,2); (A =1/N*
Rl < 1/1 (A = 1/N
end,;
F2[2] « F2[4] < F2[6] < F2[8] < 0; (F2 gets odd harmonics only
function ArrTran(array X,array Y,I); (Copies one array into another
begin
for I < 1 step 1 until 8 do X[I] < Y][IJ;
end;

function FunIntrp

(array One, array Two, array New, Fraction); (Interpolates between two arrays

begin variable I;

for I < 1 step 1 until 8 do

New([I] « One[l]+(Two[I]—OnelI]) * Fraction;

end;

instrument omMm;

variable /Switch,/Samples,/ Amp,/Count,Limit,/Intr,/Vib, Var,
/AmpScl,/Rate,/Inc,/FormantPeriod,/ AttAmp,/ Att,/1,/Gliss,
/H1,/H2,/H3,/H4,/H5,/H6,/H7,/HS;

44 Computer Music Journal

i__only begin
Samples < Var « 0;
Switch « 1;
ArrTran(Shapel,P9,1); ArrTran(Shape2,P10,1);
GetHarms(NewAmp, Shapel, Amp < P4);
FormantPeriod < sRate * P6;
Count < FormantPeriod + 1;
Limit < sRate * P11;
end;
if Samples = Limit then
begin
Samples <« Samples+1;
Intr < Samples/Limit;
value[16](FunIntrp(Shapel,Shape2, CurShape,Intr));
end,-
if Count > FormantPeriod then
begin
Count < 0;
ArrTran(OldAmp, NewAmp, I);
GetHarms(NewAmp, CurShape, Amp);
end;
Rate < P6 + oscil(P7—P6, mag/P2, P8);
value[8](FormantPeriod < int(sRate * Rate));
value[4](Switch « 1);
if Switch = 1 then
begin
Intr « Count / FormantPeriod;
for I < 1 step 1 until 8 do

Amps[l] « OldAmp[I]+(NewAmp[I[]-OldAmpl(I]) * Intr;

Switch « 0;
end;
Count < Count + 1;
AttAmp < expen(1, mag/.17, Ramp32);
if AttAmp > 0 then
Att < 1 + RANDH(0.5 * AttAmp, 4000 * mag);
Gliss < oscil((P12—P3) * Att * mag, mag/P2, P13);
Vib <« oscil((P14*P3) * Att * mag, mag * P15, SYN);
Inc < P3*Att*mag + Gliss + Vib;
H1 < oscil(Amps[1], Inc, SYNJ;
H2 <« oscil(Amps[2], 2 * Inc, SYN);
H3 <« oscil(Amps[3], 3 * Inc, SYN);
H4 <« oscil(Amps[4], 4 * Inc, SYN),
H5 <« oscil(Amps[5], 5 * Inc, SYN);
H6 <« oscil(Amps[6], 6 * Inc, SYN);
H7 <« oscil(Amps|7], 7 * Inc, SYN);
H8 « oscil(Amps|[8], 8 * Inc, SYN;
AmpScl < linen(1, P16, P17, P2, P5, Var);

outa < outa + (H1+H2+H3+H4+H5+H6+H7+HS8)* AmpScl;

end;
play;

omm 0 3 F 2000 Env 1 0.1 Rampl F1 F2 2.5 G Gliss 0.012 4.50.2 0.2;

finish;

(Initialization code

(Get spectral envelopes
(Initial amplitudes

(Rate of formant change
(Counter for interpolating
(How quickly to interpolate

(Interpolate spectral envelopes

(Save previous formants
(get new formants

(Get rate of formant change

(Convert to samples

(Calculate current amplitudes

(Attack noise envelope

(Attack noise

(glissando factor

(vibrato factor

(Calculate frequency increment
(generate eight harmonics

(Amplitude function
(Output

(sample instrument call

McNabb

45

Code Listing 6. An oscil-
lator is used to shape

a signal read in by the
readin function; the
shaping envelope name
is passed in P4.

instrument SHAPER;

variable /Env;

Env < zoscil(P3, mag/P2, P4);
outa < outa + readin(RD)* Env;
end;

(Parameters: Beg, Dur, Amp scaler, Envelope

(generate envelope
(multiply times input samples

each modified by one modulator, one of which con-
tains a complex wave. The second carrier, which
produces an inharmonic spectrum, actually con-
tributes relatively little, since its amplitude is kept
small. Most of the characteristic sound comes from
a combination of one harmonic spectrum, with a
second harmonic spectrum having a fundamental a
just minor 10th above the first. This instrument is
used at the very beginning of Dreamsong and again
in the middle, at about 350 sec.

A handbell sound was also created, which uses
two modulators and two carriers like two simple
FM units in parallel. There is no inharmonic ratio
in either unit, and again the characteristic sound
comes from the combination of one harmonic spec-
trum with another having a fundamental a just
minor 10th above the first.

Processing Techniques
Shaping

Most of the following processing algorithms are
constructed around the functions defined in the
section entitled “Some Key Functions” and were ap-
plied to the digitally recorded sung vocal and crowd
sounds and to previously synthesized sounds. They
demonstrate in particular the usefulness and ver-
satility of the zDELAY function.

An introductory example of sound file processing
in MUSI10, Code Listing 6, is an instrument that
reads a sound file, shapes its amplitude by a given
function, and writes it out again.

Comb Filtering, Flanging

Perhaps the simplest application of zDELAY is as a
comb filter, which results when a delayed signal is

46

added back to itself. Since the peaks thus produced
are separated by a constant frequency, they form a
harmonic series and can be used to give a pitched
effect to an otherwise nonpitched sound. As more
feedback is added, the filtering is more severe and
the pitched effect is more pronounced. A delay of
sRate/f samples (used for curLen in Code Listing 1)
will place the first peak at frequency f. If the delay
is doubled and the delayed signal subtracted from
the original signal instead of added, the peaks form
a pattern that corresponds only to odd harmonics,
which produces an expectedly “hollow” effect. If
feedback is used, the output signal must be renor-
malized down to a reasonable amplitude.

Modulation of the delay time (curLen in Code List-
ing 1) with a sine wave results in an effect known
as flanging. This term originated in the pop music
recording industry when somebody got drunk and
discovered that an interesting phasing effect could
be produced by setting up a very short tape delay
and leaning on the flange of the reel to change its
speed slightly. Of course, functions other than a
sine wave may be used as modulators. The max-
imum delay time should be around one period of
the sound being processed. This produces more
than just a nice sound when the function used is
not just a sine wave; if the modulating function un-
dergoes discrete changes, a sequence of pitches is
heard. This occurs in Dreamsong 30 sec into the
piece, when the initial crowd noise is processed
into playing the opening melodic motif.

Choral Effect

A more useful ability of zDELAY is to provide a cho-
ral-effect generator that can be used on any sound,
in particular on digitally recorded sounds and syn-
thesis instruments that are too complex to allow
for multiple copies. In Code Listing 7, three delayed

Computer Music Journal

Code Listing 7. Instrument
CHORUS: RANDFC and
ZDELAY functions are used
to generate a choral effect
from any sound.

array Buffer[512];
zero(Buffer);

instrument CHORUS;
variable /Sig, /Del,/De2,/De3, /Dsl,/Ds2,/Ds3,

i__only begin

Len <« length(Buffer);
Rate <« P3;
Dev < P4;
end;
Sig < readin(RD);
Del < Dev + RANDFC(Dev,Rate,.5,A1,A2,A3);

Dsl < ZDELAY(Sig, Del, Len, Buffer, Inptr);

Ds2 < SDELAY(Sig, De2, Len, Buffer, Inptr);

Ds3 < SDELAY(Sig, De3, Len, Buffer, Inptr);

outa < outa + (Sig + Dsl + Ds2 + Ds3) * 0.3;
end,

/Inptr,Len,Dev,Rate,/Al,/A2,/A3,/B1,/B2,/B3,/C1,/C2,/C3;

Inptr < Al < A2 < A3 < Bl < B2« B3« Cl < C2<«<C3<0;

De2 <« Dev + RANDFC(Dev,1.1*Rate,.5,B1,B2,B3);
De3 <« Dev + RANDFC|(Dev,.9+Rate,.5,C1,C2,C3);

(4 Hz is typical
(10 msec worth of samples is usually good for this

(Input the samples
(delays range from O to Dev#2;

(three delayed versions of signal
(SDELAY reads out in a different spot
(Yet another copy

(combine all with original, rescale

copies of the signal are combined with the original.
The delay time of each copy is modulated indepen-
dently by a ranDEC. The frequencies of the three
modulators are offset by about 10%.

Panning, Doppler Shift

The instruments discussed in this section make

up the spatial movement system used in Dream-
song. Since the piece is in only two channels, every
effort was made to maximize the effect of depth and
movement. To this end, there is a panning instru-
ment used to both simulate Doppler shift and mod-
ulate the initial reflection times for reverberation.
This instrument is set up to move the input signal
in a straight line or in an arc through an imaginary
space defined by distances given in meters.

In general, the action may be thought of as taking
place on an x-y coordinate “stage” (see Fig. 3). The
amplitude of the direct (nonreverberated) part of the
signal is scaled to be inversely proportional to the
“distance” from the listener; maximum amplitude

occurs when the sound is positioned at the same
distance as the speakers. The delay of the direct
signal is made dynamically proportional to the
distance by use of a zDELAY. The first parameter to
ZDELAY is the scaled direct signal, and the second
parameter is the delay time in samples, which is
equal to the distance times the sampling rate di-
vided by the speed of sound. Since only the delayed
signal output from the zDELAY is sent to the output,
an accurate Doppler effect results as the distance
changes. Computation of a Doppler effect in this
manner is efficient, and is equally applicable to
synthesized and recorded sounds.

Similar scaling was done on each channel of re-
verberation as well as in the reverberation instru-
ment. Modulation of the amplitude and reflection
times of each channel of the reverberation was pro-
portional to the total distance that the sound would
travel —from the apparent source, back to the
“wall,” then to the listener (who is, of course, as-
sumed to be in the ideal listening position; sigh).
Three “sources” of reverberation were calculated
this way, one coming from each channel and one

McNabb 47

shown at the bottom of
the figure. The listener is
ideally positioned at 0
along the bottom axis. The
first five calls to the pan-
ning instrument move the

Fig. 3. The imaginary spa-
tial environment defined
by the panning and rever-
beration instruments ex-
tends beyond the two
speakers (black squares)

14 +

12 -+

in the final position. This
is the first such path that
is used in Dreamsong, be-
ginning 29 sec into the
piece.

sound in the shape of a
five-pointed star. The sixth
call continues traveling
one and one-half times
around a circle, and the
final call holds the sound

1 (start)

10 -

Distance (meters)

X~ 8hold 7

=2

Distance (meters)

from both channels. Thus, if a sound were posi-
tioned on the left, the reverberation from the right
channel would be delayed and scaled at a lower am-
plitude relative to the left channel reverberation.
Robert Poor came up with the basic idea for this
application of zDELAY. Figure 3 is an example of
how the reverberation instruments can be used to
set up an imaginary space 15 m deep, with the
speakers positioned 2.8 m from the listener in ideal
position.

Amplitude Modulation with Complex Wave

From 70 to 100 sec in Dreamsong, a choral texture
is gradually transformed into a texturé that sounds
like strings and brass. This effect was carried out by
amplitude modulation (AM) of the digitized vocal
tones with a simple FM instrument (see Code List-
ing 8). The amounts of FM and AM modulation

are gradually increased in parallel. For the effect

48

achieved in Dreamsong, the frequencies of the FM
oscillators were close to the center frequency of the
signal being modulated. Due to the random vibrato
in the original signal, the subjective density of the
sound is also increased due to phasing and beating
effects with the steady FM tone.

Pitch and Envelope Follower

Instrument prrcH (Code Listing 9) reads in a file
and puts out its pitch and amplitude contours. It
does this by looking for the peaks of the waveform
within a window that is dynamically readjusted ac-
cording to the current amplitude. It remembers the
precise time each peak occurs and calculates the
frequency every period. After checking to see that a
reasonable value results, it sends out the average of
the last four values calculated (for smoothness). It
is a tricky business, and many of the variables need
to be adjusted precisely for each individual file to

Computer Music Journal

Code Listing 8. Instrument
AMoD amplitude
modulates a signal using
an FM-generated
waveform.

Code Listing 9. Instrument
PITCH puts out an
amplitude and pitch
contour of the input signal
in variables Amp and
Freq, which can be read by

another instrument (see
Code Listing 10). The
Squelch removes low-level
transients from the more
or less silent parts of the
input signal.

synth(F1);1 1, 999;
seg(F2);0 0, 1 100;

instrument AMOD;

variable /Sig, /FmScl, /Out, /FM, /Am;

Sig < readin(RD);

FmScl < oscil(1, mag/P2, F2);

Fm <« oscil(FmScl#P4+P3+mag, P3*mag, F1);
Am < 1 + zoscil(FmScl, P3*mag+FM, F1);
Out « (Sig * Am)/ (1+Dev);

outa < outa + Out;

end;

(sine wave

(ramp from (0,0) to (100,0)
(Beg, Dur, Freq, Deviation

(input signal

(modulation envelope
(FM modulator; P4 is the index

(FM carrier

(amplitude modulate and rescale input signal
(by the FM deviation (see Chowning 1973)

array Freqs1[16],Freqs2[4],Dell,Del2[2000];
zero(Dell);zero(Del2);

variable /Freq, /Amp, /Samp;

instrument PITCH;

i__only begin
for I < O step 1 until 15 do Freqsl[I] « P3;
for I < O step 1 until 3 do Freqs2[I] « P3;
Avg < Freq <« P3;

S1 «8S3 « 1;

CCRI1 « 2 * sRate/P3;
CCR2 « 960;

Inc « 1/CCR2;
Peak__Window « 0.12;
Freq__Window <« 0.3;
Squelch « 25;

end;

Samp < readin(RD);
if Samp > Max then Max « Samp;
if Samp < Min then Min « Samp;

value[CCR1](S1 < 1);

(Global variables to be read by filter instrument

(in Code Listing 10

variable /Max,/Min,/MaxLim,/MinLim,/Peak,/Timel,/ Time2,/ Avg,/ AvDev,/],
/81,/82,/83,/84,/ Tmpl,/ Tmp2,/ Tmp3,/Interp,/Inc,/Cnt,/Cntl,/Cnt2,/Sum,
/Ampx,/Ampl,/ Amp2,/ TmpFreq,/ CCR1,CCR2,Inc,Peak__Window,Freq__Window,Squelch;

(P3 = A guess at the average pitch

Timel «<Amp2<«Max<«Min<«Peak<«Interp«—Cnt<Cnt1«Cnt2<S2<0;

(controlled calling rates

(increment for amplitude envelope interpolation
(these variables need to be readjusted for

(different kinds of sounds

(Probably not needed for many sounds

(get next sample of input signal
(Keep track of local maxamp & minamp

McNabb

49

Code Listing 9 (cont’d)

if S1 = 1 then begin
Tmpl « Max — Min;
Tmp2 < Tmpl / 2;
MaxLim < Max — Tmpl * Peak__Window;
MinLim < Min + Tmpl * Peak__Window;
Max < Min < S1 <« 0;
end;

value[CCR2](S3 « 1);
if S3 = 1 then begin
Ampl <« Amp2;
Amp2 < Tmp2;
if Amp2 < Squelch then Amp2 « 0;
Tmp3 < Amp2 — Ampl;
S3 <« Interp « 0;
end;

Amp < Ampl + Tmp3 * Interp;
Interp < Interp + Ingc;

if Samp > MaxLim then
if S2 = 0 then
if Samp > Peak then
begin
Peak < Samp;
Time2 < Cnt;
end
else S2 « 1;
if Samp < MinLim then
if S2 = 1 then
begin
TmpFreq < sRate / (Time2 — Timel);
Freqs1[Cntl] « TmpFreq;

Sum <« 0;

Avg < Sum/16;

begin
Freqs2[Cnt2] « Freqs1|Cntl];

Sum <« 0;

Freq < Sum/4;
CCRI <« 2 * sRate/Freq;
end;
Cntl <« Cntl + I;
if Cntl = 16 then Cntl < 0;
Timel < Time 2;

for I < O step 1 until 15 do Sum « Sum + Fregs1[I];

if abs(Freqs1[Cntl] — Avg) < Freq__Window * Avg then

Cnt2 < Cnt2 + 1; if Cnt2 = 4 then Cnt2 « 0;

for I < O step 1 until 3 do Sum <« Sum + Freqs2|[I];

(Update limits for finding peaks every CCR1 samples
(Current peak-to-peak amplitude

(Peak amplitude

(Amplitude window for positive peak

(Amplitude window for negative peak

(reset variables

(update amplitude for contour every CCR2 samples
(replace starting amp

(goal amp « current peak from above

(may not want very low amplitudes

(net difference

(reset variables

(Interp from one amp value to the next
(increment is 1/CCR2

(Let’s look for the peak now

(update peak value
(note the time (in samples)

(good time to figure out current frequency

(new frequency value

if TmpFreq > Avg * 2 then Freqs1[Cntl] < Avg;
if TmpFreq < Avg/2 then Freqs1[Cntl] « Avg;

(take average
(of last 16 frequencies

(If new value is not too
(weird then accept it
(Add to 4 most current
(acceptable values

(average these for smoothness

(counter for freqsl array

(the two peak times

Peak « S2 < 0;
end;
Cnt < Cnt + 1; (sample counter
end;
50 Computer Music Journal

Code Listing 10.
Instrument COMB uses
variables Amp and Freq
from the PITCH instrument

(Code Listing 9) to control
amplitude and peak
position of the comb filter
ZDELAY.

array BuffA BuffB[512]BuffC[800];
seg(F1);0,1 0,18 0.6,34 1,50 1,100;
seg(F2);0,1 0,50 0.1,57 0.3,64 0.6,71 1,100;

instrument COMB;
variable /CrowdR, /CrowdL, /DelSigA, /DelSigB,
/PtrA, /PtrB, /G, /CrowdAmp, /Del, /Voice;
i__only begin
DelSigA < DelSigB « PtrA « PtrB « 0;
zero(BuffA); zero(BuffB);
Freq < 200; Amp < 500;
end;
CrowdR <« readin(RD);
CrowdL < readin(RD);
VoiceAmp < oscil(1, mag/P2, F2);
AmpMod < INTRP(1,Amp/500,F1);
CrowdAmp < AmpMod * (1—VoiceAmp);

G <« oscil(l, mag/P2, F1);

Del < sRate / Freq;

DelSigR < zDeLAY(CrowdR * G, Del, 512, BuffA,
PtI'A);

DelSigL < zDeLAY(CrowdL * G, Del, 512, BuffB,
PtI'B);

Voice < DELAY(Samp, 800, BuffC);

outb < outb + (CrowdL+DelSigL) * CrowdAmp +
end;

outa < outa + (CrowdR+DelSigR) * CrowdAmp + Voice * VoiceAmp;

(read in crowd sound in stereo

(controls mix of unfiltered voice
{controls modulation of crowd
(by amplitude of voice

(controls gain of filter
(Freq comes from PITCH instrument, Code Listing 9

(stereo dynamic comb filters

(delay voice to match delayed information
(from PITCH

Voice * VoiceAmp;

be read in. In Dreamsong, this instrument was used
(1) to check the pitch of some of the soprano notes
and (2) to follow the pitch and amplitude of Dylan
Thomas’s voice, which was used to modulate a
ZDELAY comb filter on the crowd sound at the very
end. The filtering/mixing instrument (coms) used
for that is given in the next section.

Stereo Comb Filters Controlled by Pitch

Instrument coms, given in Code Listing 10, reads
in a stereo signal and filters it with a comb filter
that has its first peak at the frequency provided by

the prTCcH instrument. It also modulates the ampli-
tude of the input signal by the amplitude of the
sound being read by prrcH and gradually inter-
polates between the sound being filtered and the
sound doing the modulating. In Dreamsong, the
modulating sound was Dylan Thomas’s voice (taken
from a recording) and it was used to filter the crowd
sounds that serve as one of the motivic elements.
The passage begins with the straight crowd sound,
which gradually becomes more and more processed
until it takes on the pitch and cadence of Thomas’s
characteristic speech. At this point it is gradually
cross-faded with the unaltered voice.

McNabb 51

Fig. 4. Graphic representa-

tion of central portion of

Dreamsong. The frequency

scale is logarithmic, time

is in seconds, and the

52

Frequency —

W
n
[
o
]

INEENEENENNE

1760

440

220

110

lllllllJllllllllllllllllIllllllIlllllllllll[llLlllllll!

thickness of each line

duced by the author with

is proportional to ampli- the aid of graphics rou-

tude. Instruments OMM,

tines by James A. Moorer

BELL1, and BELL2 are play- and the MUSBOX program
ing here. This plot was pro- of D. Gareth Loy.

—
[.
=
F——
—_—
e 0o i Sl PP e ——
R A tad 4 o 4 A g
D e R SR
i P Hi e b e
L e+ 440 Sas o oo)
e ——
@ —
e o 2
)
[
Y \ —
[—
]
] : —_—‘
L g
? e ———

0

315

329

|
325

|
330

|
335

T T T [pm——

340 345 350 355 360 365 370 375 380

Time —

Computer Music Journal

Acknowledgments

The author wishes to thank the many people who
wrote and taught him to use effectively the pro-
grams used in Dreamsong, who helped him over
conceptual or mathematical stumbling blocks, and
who calmly gave him encouragement when he was
mad as hell about some programming bug and
wasn’t going to take it any more. The many include
John Chowning, John Grey, D. Gareth Loy, F. Rich-
ard Moore, James A. Moorer, Robert Poor, Loren
Rush, Bill Schottstaedt, Ken Shoemake, Julius
Orion Smith, Leland Smith, Tovar, and Paul
Wieneke.

Thanks also to Stephen Volz, who helped me
make that beautiful recording of the crowd, to so-
prano Marilyn Barber, who provided so much with
so few notes, and to John Strawn for his editorial
assistance.

References

Arnold, A. 1978. Private communication.

Chowning, J. 1973. “The Synthesis of Complex Audio
Spectra by Means of Frequency Modulation.” Journal of
the Audio Engineering Society 21(7):526—534. Re-
printed in Computer Music Journal 1(2):46—54, 1977.

Chowning, J. 1980. “Computer Synthesis of the Singing
Voice.” In Sound Generation in Winds, Strings, Com-

puters, ed. J. Sundberg. Stockholm: Royal Institute of
Technology, pp. 4—13.

Gardner, M. 1978. “Mathematical Games: White and
Brown Music, Fractal Curves, and One-over-f Fluctua-
tions.” Scientific American 238(4):16—31.

Howe, H. S., Jr. 1975. Electronic Music Synthesis. New
York: Norton.

Mandelbrot, B. 1977. Fractals: Form, Chance and Di-
mension. San Francisco: Freeman.

Mathews, M. 1969. The Technology of Computer Music.
Cambridge, Massachusetts: MIT Press.

Portnoff, M. R. 1976. “Implementation of the Digital
Phase Vocoder Using the Fast Fourier Transform.” IEEE
Proceedings on Acoustics, Speech, and Signal Process-
ing 24:243-248.

Rush, L., and J. Mattox. Forthcoming. “Mama Don’t Al-
low No Tape Machine 'Round Here: The Digital Audio
Production Facility.” In Computer Music, ed. C. Roads
and J. Strawn. Cambridge, Massachusetts: MIT Press.

Schroeder, M. R. 1961. “Natural Sounding Artificial Re-
verberation.” Journal of the Acoustical Society of
America 10(3):219-223.

Smith, L. 1972. “Score: A Musician’s Approach to Com-
puter Music.” Journal of the Audio Engineering Society
20:7-14.

Tovar. 1977. “Music Manual.” Unpublished user’s man-
ual. Stanford: Center for Computer Research in Music
and Acoustics.

Tovar, and L. Smith. 1977. “MUS10 Manual.” Unpub-
lished user’s manual. Stanford: Center for Computer
Research in Music and Acoustics.

McNabb 53

